Angajē

The Impact of Indenture

Explorations into the history, society and culture of indentured immigrants and their descendants in Mauritius

Volume 2
Angajē....

In memory of the indentured labourers from India and other parts of the world who worked, lived, suffered, resisted and died in Mauritius between 1826 and 1910.
Editorial Board

Chair
Associate Professor Vijayalakshmi Teelock, GOSK
University of Mauritius

Members
Dr Anwar Janoo
University of Mauritius

Dr Geoffrey Summers, MBE
Senior Fellow, Research Center for Anatolian Civilizations, Koç University, Istanbul, Turkey

Dr Marc Serge Rivière
University of Limerick, Ireland

Sooryakanti Nirsimloo-Gayan
Former Director-General, Mahatma Gandhi Institute and Rabindranath Tagore Institute

Editing Assistants
Babita D. Bahadoor
Research Assistant, Aapravasi Ghat Trust Fund

Christelle Miao Foh
Research Assistant, Aapravasi Ghat Trust Fund

Project Supervisor
Corinne Forest
Head Technical Unit, Aapravasi Ghat Trust Fund

Project Coordinator
Satyendra Peerthum
Researcher, Aapravasi Ghat Trust Fund
CONTENTS

List of Figures and Tables vii
Abbreviations xi
Foreword from the Editors xii
Introduction to the Series xiii
Introduction to Volume II xvi
Acknowledgments xvii
Notes on Contributors xix

PART ONE THE IMPACT OF INDENTURE ON IMMIGRANTS

Life at the Immigration Depot 3-24
 Indira Gyaram and Amirchand Singh Teerbhoohan

Shifting Identities – Names and Numbers 25-40
 Sonwantee Deepalsingh

Indentured Labour and the Application of Law.
 A Comparison between Mauritius and Réunion, 1840s-1880s 41-58
 Alessandro Stanziani

Unlawfully Married 59-73
 Pamela Sooben

The Government Orphan Asylum: A Case Study 75-81
 Alvina N. Gopaulen

PART TWO NEW INSIGHTS INTO THE INDENTURE EXPERIENCE

Dress and Identity 85-99
 Nalini Treebhoobun

The Potential of Archaeology for the Study of Mauritian
 Indenture History and Heritage 101-121
 Vijayalaskmi Teelock

Archaeological Insights of the ‘Indenture Experience’:
 The Case of Trianon Barracks 121-138
 Diego Calaon, Krish Seetah, Jacob Morales and Sasa Caval

Indian Immigration and the Press, 1832-1842 138-158
 Babita D. Bahadoor
PART THREE FROM CAMP TO TOWN AND VILLAGE

Work and Camp Experience through Oral Evidence 161-181
Trivita Mathoora

Fruits and Vegetables Sellers in the Port Louis Market 183-199
Nagamah Gopauloo

From Cane Fields to the Tea Gardens: Land Tenure and Labour at Bois Chéri, Savanne, 1832-1992 201-218
Raj Boodhoo and Hans Boodhoo Goordeen

Chinatown, Legacy of Free and Indentured Chinese Immigration 219-232
Christelle Miao Foh

Glossary 233- 236

Bibliography 237-248
Archaeological Insights of the ‘Indenture Experience’: The Case of Trianon Barracks

Dr Diego Calaona, Dr Sasa Caval, Dr Jacob Morales-Matoesc, Dr Krish Seetahc, e

a Università Ca’ Foscari, Venezia, Italia., b ZRC SAZU, Novi trg 2, Ljubljana 1000, Slovenija, c McDonald Institute for Archaeological Research, Downing Street, Cambridge. CB2 3ER, United Kingdom, d Universidad de Las Palmas de Gran Canaria, Gran Canaria, España, e School of Forensic and Investigative Science, University of Central Lancashire, Preston. PR1 2HE, United Kingdom.

INTRODUCTION

The standing barracks at Trianon (Fig. 1) represent one of the most significant material remains of the Indentured Labour System in Mauritius. More than this, they represent the type of settlement site that exemplifies the contribution which Archaeology can make towards a more complete understanding of the ‘indentured experience’: Trianon offers insight into the daily lives of labourers in a setting removed from the sugar-cane fields, metaphorically if not geographically.

According to historical documentation, the complex was erected during the second half of the 19th century. At present, no records have been found that indicate the precise date of construction, although substantial evidence refers to the condition of the structure in the 1880s. In 1880 and in 1889, during two different inspections conducted by the Protector of Immigrants and by the Inspector of Immigrants, the poor and unhealthy conditions of the buildings were highlighted. It appears that the barracks were used as dwellings for contracted workers, although the documents do not explain if the occupants belonged to a specific social / working group. These accounts indicate that the building had been in use for several decades and were already in a decrepit state.

The complex (Fig. 2) is commonly identified as ‘Trianon Barracks’, not as ‘Labourer’s Houses’, probably because of the strong similarity with other military buildings present on the island (i.e. the French Line-Barracks in Port Louis). The Trianon Barracks (hereafter Barracks) were re-used ostensibly as tenements in the 1960s.
Fig. 1: Location of the site

Fig. 2: Trianon Barracks, view from North
Following the devastation of ‘Cyclone Carol’ in 1960, some families were lodged in the Barracks as they had lost their homes.

The fact that the Barracks formed part of the Trianon Camp is borne out by historical accounts. However, there is no strong correlation between the Barracks and the core of the Trianon Camp, which were placed in completely different areas.

Details of Construction of the Barracks

In order to contextualise the subsequent archaeological excavations, it is useful to outline briefly relevant aspects regarding the construction and fabric of the ‘standing archaeology’, i.e. the Barracks themselves. The complex is composed of 15 units, each with the same uniform dimensions (3, 5 m x 7, 1 m), and a basic overall structural organisation, i.e. front and rear entrances and vaulted ceilings. Clearly, the building techniques employed and modes of construction denote that specialized workers followed a detailed plan during the erection of the Barracks. Furthermore, before elevation, the soil was levelled and a substantial foundation was laid. As one might expect, the floor height for each unit has been raised to the same level, despite a sloping of the ground level. The façade and the rear walls of the Barracks are continuous load-bearing walls. Partition walls, lying perpendicular to the main walls, divide the units. A composite tunnel vault, as opposed to one constructed of cut block, forms the roof of each unit with a cornice marking the top part for the façade wall and the vaults.

The walls are made of cut basalt blocks (Fig. 3). All the corners consist of finely-chiselled blocks, with a smooth surface and a white coral lime mortar. The average size of the blocks, except for those used at the corners, is 20x25 - 30 cm. Partial conservation was undertaken in the late 20th century, although the walls and vaults have never been restored or refurbished.

The units are well built, with fine details of design, especially visible around the front doors and in the drain-pipe system. The front doors present an architrave and jambs made by large blocks, alternating between smooth and rough-hewn. The inner sides of the jambs are smoothed and it is possible to find the originals holes for the door hinges and locks. Over the door, each unit has a small window, forming a loophole. The first eight units retain a large window instead of the loophole, but this is a later modification connected with the reuse in the late 20th century. Over the partition walls, an appropriate sloping of the roof allows the drainage of rainwater, which was channelled along metal gutters.

The interior of each unit was plastered and decorated in yellow or light pink. A delineation in the paint reveals that the top portion of each chamber (the vaulted part)
probably formed a sleeping area. The presence of a possible wood mezzanine is attested to by nail holes and indications in the paint. The main floor was used as the living / storage / kitchen area; although it is likely that food was prepared inside, some families cooked outside, as the excavation of Trench 1 demonstrates. Only the restored units retain external kitchens were made of concrete bricks.

ARCHAEOLOGY AT TRIANON

The archaeology researchers followed a standard methodological protocol. Two field-walking surveys were undertaken in 2009 and 2010; a geophysical reconnaissance with magnetometry and resistivity was performed in 2009, and a Ground Penetrating Radar (GPR) survey was done in May 2010 (GPR is a geophysical method that uses radar pulses to image the subsurface). Equipped with the results of these non-destructive methods, our team undertook archaeological excavations in earnest in July 2010; this exercise was complemented with a further field season in 2011 that focused on the recovery of bioarchaeological samples. The team consisted of members from the University of Mauritius, Ca’Foscari University, Slovenian Scientific Research Centre, Reading University and the University of Central Lancashire.

Field walking (Fig. 4) was undertaken in order to gain an initial picture of the archaeological potential of the area. Figure 4 demonstrates the extent of the work undertaken, showing the gridded part to the rear of the site. Field walking is particularly important to provide evidence of variations in site occupation. It was also used to determine if the field was covered with other soils, introduced from non-local sources. The distribution patterns of ceramics and metals (Fig. 5) show interesting concentrations of finds in the field to the back of the Barracks. The highest concentration of ceramic fragments seems to be connected with the presence of a structure, later uncovered in Trench 1. This area was clearly related with the activities of daily life (i.e. kitchens), as testified by the relatively high quantities of pottery (dishes, bowls, cups). The low quantity of animal bones is almost certainly indicative of domestic rubbish being deposited in specific places (waste areas or middens) away from the kitchen / food preparation areas – as one would expect.

The distribution of the metal artefacts is more uniform than that of ceramic finds, which may relate to the quality of the metal objects. The majority of these are not linked with household waste. Nails, metal bars, hooks and studs were recovered, all objects associated with agricultural tools or those used in the construction of the local buildings. A concentration of metal finds is evident in the Northwestern side of the field, which should form the location for future researches.
The GPR survey (Mušič 2012) provided interesting results (Fig. 6). The highly informative outcomes formed the basis for the subsequent excavations. The features outlined in the GPR Research Report indicate the presence of at least one substantial new building along with other intriguing subsoil structures.

Three trenches were opened to investigate the subsoil features, identified from the GPR scan (Fig. 7). The excavation identified different stratigraphic units (or ‘contexts’) which, for the purposes of clarity and to facilitate recording and accession, were assigned a unique identifying index number (i.e. context number). A select quantity of fill contexts were subject to 100% coarse dry sieving, firstly through a 5mm mesh and then, subsequently through a 3mm mesh. Flotation for biological analysis was undertaken, particularly from fills derived from the drainage feature, unearthed in Trench 2. All finds were hand-collected.

In Summary: Trench 1 focused on the clear signal, indicating a long rectangular structure (Structure A), perpendicular to the standing Barracks. The second trench encapsulated the more ephemeral signal to the right of Trench 1. A third trench was subsequently opened some 10 metres to the Southwest (Fig. 7) of the Barracks, but along the same plane as Trench 1. An additional trench (Trench 3) was excavated directly adjacent to the standing Barracks. This allowed for appraisal of the construction method of the Barrack foundations, which was consequently contrasted with those of Structure A.

THE ARCHAEOLOGICAL SEQUENCE

The aim of these excavations has primarily been for the verification of the nature of the subsoil anomalies evident in the GPR scan. Trench 1 was located precisely where the GPR survey indicated a square outline, evidently the short side of a large rectangular building, perpendicular to the Barracks themselves. Trench 2 was positioned over other anomalies in the Northeastern part of the field, towards the rear of the Barracks. This trench revealed a complex system of drainage; the channel and pits that were identified beneath the top two layers, composed a system that ran from behind the Barracks towards the temple. Unfortunately, the dimension of the trench did not permit a complete reconstruction of the plan of this drainage system.

Chronologically speaking, Trench 1 is the most representative (Fig. 8). The excavation covers six different archaeological phases, chronologically spanning a period that embraces some 200 years, between the second half of the 19th century and the present day. The following details the sequences uncovered.
Fig. 3: Photogrammetry of the Standing Barracks, 2009

Fig. 4: Field-walking 2009 and 2010. Grid locations
Phase 6: Before the Building (Second Quarter of the Nineteenth Century)

The earliest phase, uncovered during this excavation, can be dated back to the early 19th century and is linked to the presence of an agricultural field system. Context 53 represents the main layer, characterised by a compact clay texture, light yellow in colour and rich in organic material. This deposit testifies that the area was a ploughed field, with the soil cleared of the ubiquitous boulders, discharged following volcanic activity. Interestingly, there was an absence of the usual large quantities of charcoal in the agricultural layer, a feature reversed in the subsequent agricultural phases 2 and 1 (see below). This would suggest that for this phase, there was a hiatus in the usual burning practices that preceded the harvesting of the sugar cane.

Phase 5: Construction Yard of the Stone Building

The next phase is correlated to the construction yard of a stone building. The foundation of a very large building – as mentioned, Structure A – was excavated, which had been filled with small and medium volcanic stones, without mortar or lime. Although the excavation confirmed that the lower levels of the foundation were free of mortar, the presence of large quantities of mortar and lime in the upper levels (phases 2 and 1) demonstrates that the walls were bound with a strong coral lime mortar.

The foundation (Fig. 9) was formed by irregular, uncut basalt stones (15-20 cm of diameter on average). It is highly probable that these stones were those collected on the surface of the fields during preparation of the agricultural areas. The foundations were wide (0.80 metre) and evidently planned for a relatively high wall, suitable for multi-level construction. It was not possible to carry out a complete GPR scan of the building in its entirety; of the visible area, the results (see par. 2) indicate a construction of 5.5 to 6 metres in width, by 23 metres in length. However, taking into account the size of the field system itself and the potential that the dividing wall is in fact central, the extrapolated dimensions, would suggest a building of some 34 metres in length overall (Fig. 6). The foundations correspond to the northern side of the building, the short side, which probably did not present any openings (doors or windows).

The height of the walls is testified by the presence of a significant system of postholes along the foundations. At least five of these were cleared, revealing that they measured approx. 10-15 cm in diameter and 15-20 cm in depth and were filled with dark loose silt. This suggests the presence of wooden poles used as a scaffolding structure. The scaffold was necessary as the extrapolated height of the wall would have been at least 2 to 2.5 metres.
Fig. 5: Predictive maps of the distribution of ceramics and metal, according to the 2009 and 2010 field-walking data

Fig. 6: Ground Penetration Radar (GPR) results and interpretation, 2010
Fig. 7: Location of the 2010 Trenches

Fig. 8: Trianon 2010, Trench 1, Harris Matrix
Fig. 9: Plan of the SU 03,05,04, Trench 1, Trianon 2010

Fig. 10: SU 05, Foundation of the side wall of Structure A, view from North-East
Fig. 11: Section, possible building design, and its relationship to the standing barracks

Fig. 12: Trianon: Geo referencing of archaeological features for the Core Estate
The technique used during the creation of the foundations was completely different from that used for the Barracks. A test trench (Trench 3), opened along the northern wall of the Barracks, revealed their foundations to be deep, but not wide (60-70 cm) and were formed by using stones, cemented with a strong coral lime mortar.

PHASE 4: THE LONG STONE BUILDING—A POSSIBLE CATTLE-SHED OR A WAREHOUSE.

The alignments uncovered during excavation, coupled with the GPR data, allow us to determine the precise dimensions and orientation of Structure A. Lying perpendicular to the Barracks, it would appear to be contemporaneous with the Barrack complex.

Unfortunately, the original inner layers were not preserved, nor were the pavements. Therefore, it has not been possible, at this stage, to determine the exact function of the building. The first undisturbed context (SU 04), excavated inside Structure A, is a compact layer with a clay-silt matrix. It contains small stone flakes, probably created during the construction. Although agricultural ploughing disturbed the surface, this context has been interpreted as the preparation layer for the original inner floor. In this context, a number of ceramic finds were recovered consisting predominantly of table-ware fragments. Even though these were very small (on average no more than 1-1.5 cm in length/width), it was possible to recognise some representative typologies, characteristic of the Mauritian archaeological assemblages of the first half of the 19th century. This context helped considerably with the dating of the building as it included fragments of white-ware dishes (transfer printed) decorated in blue, as well as a few remains of annular ware cups and small fragments of plain, white refined earthenware vessels. A thin layer of dark and compact organic material covered this stratigraphic unit. The colour and the thickness suggest the presence of animals (possibly cattle) inside the building or the use of the building as a warehouse for organic goods.
Phase 3: A backyard area between two buildings

The third phase is related to the use of the external area of the building as a courtyard. People who lived in the barracks cooked and ‘lived’ outside the habitation units themselves. They potentially utilised basic items of furniture under a porch-type structure. The canopy leaned against the sidewall of Structure A; a number of features support this archaeological interpretation.

The main excavated context (SU 03, Fig. 10) would best be described as an external floor level. It contains compact clay and a large amount of small charcoal fragments. The surface is clearly marked by numerous postholes and apparently represents a well-worn floor. A group of four postholes, roughly square-shaped, was found in the centre of the excavated area. The shape and the depth (8-9 cm) imply the presence of square-shaped poles inside, probably the wooden legs of a piece of furniture (perhaps a table). A different group of round-shaped postholes indicates a different structure; with a diameter of 20-25 cm and depth of 15-20 cm, combined with flat square-shaped stones serving as wedges, this combination of features suggests the presence of long wooden poles, possibly holding a canopy (Fig. 11).

The most significant feature is an oval pit that can be interpreted as a sort of temporary refuse pit. The cavity (20 cm in depth, 35 cm in width) unfortunately was emptied in the past, but a few remains of the ancient fill were excavated, revealing copious quantities of charcoal, fragments of a coarse ware pot, a fragment of an Indian oil lamp, similar to those used during the celebration of Diwali, and fragments of animal bones. A portion of this deposit (Sample 13, context 6) underwent flotation with some interesting outcomes (see par. 5).

Other interesting finds, recovered in this phase, are represented by a small group of metal nails, pieces of metal lamina and two pieces of an iron pipe. All these elements could be related to the occurrence of some piece of furniture probably associated with an outdoor cooking area. The cuts of two small channels, with North-South alignment, were clearly visible. They were shallow (5-7 cm), with an overall length of between 60 and 70 cm. The inner surfaces of the channels were smoothed, indicating that they may have served to drain water away to the outside of the canopy.

Finally, a thin ash layer was ubiquitous over all the features and suggests that the canopy was ultimately burnt.
Phase 2: The Bedding of the Sugar Cane

The excavations reveal that during the first half of 20th century, the building had become obsolete and the area was transformed into a sugar-cane field.

Before sugarcane cropping could occur, the area was ploughed and levelled, completely transforming the spaces previously occupied by the ancient stone and wooden structures. This activity had a profound impact on the conservation of these earlier structures. The lack of waste building materials in the vicinity would suggest that the walls were carefully disassembled to allow for reuse of the raw building blocks. Ploughing removed the original floor levels and the top parts of the pavements. In fact, as described above, virtually all the archaeological remains uncovered are the foundation components or the lower portions of holes and depression around the old construction. Only a few archaeological features remain, and most are “negative”, i.e. post-holes.

Feature 08 represents the demolition of the structure, with the building razed to its foundations, and disassembled in order to reuse the stones.

Interestingly, the furrows of the first plough are still visible, as regularly linear marks on some of the foundation stones. In fact, the excavation documents five negative traces, in a South-North direction, clearly marked on the top surface of the foundations. At the end of each plough-trace, is a large basalt stone, evidently moved for the distance of a few tens of centimetres by the plough. This deep ploughing was a necessary activity in order to convert a settled area into an agricultural field.

Phase 1: Modern Agricultural Field

The final phase corresponds to the modern period. The topsoil (SU 01) of the trench is clearly identifiable, with the use of the area as a sugar-cane field. This context is rich in modern and contemporary finds (such as plastic objects and building materials) and shows evidence of a very large quantity of charcoal. The presence of charcoal corresponds to the regular burning of the cane field. This process is carried out before harvesting the cane, to make the procedure easier and requiring less manual labour.

An Indentured ‘Marker’? Plant Macro-remains in Trianon 2011

During the 2011 campaign, thanks to the kind support of the AGTF, it was possible to carry out a preliminary program of systematic flotation for the recovery of
macrobotanical remains. A percentage of the sediment was floated in order to collect as much information as possible on the use of plants by the population of Trianon. This allowed the recovery of a total of 17 samples, equivalent to 75 litres of sediment. As this was a preliminary assessment of the future potential of this type of sampling, we did not anticipate large quantities of ancient plant remains. However, it was possible to recover small densities of charred material (mostly charcoal), along with one charred, well-preserved seed remain. This has been identified as chickpea (*Cicer arietinum*), recovered from Trench 1, context 6 (Sample 13). In addition, a desiccated seed of Spanish cherry (cf. *Mimusops elengi*) was identified in the same sample; however, the preservation of this item suggests that it may be a modern contamination. Despite the paucity, the recovery of any ancient plant remains on a site which has undergone such a high level of disturbance is very welcome and bodes well for future work; the fact that the plant recovered is chickpea represents a genuinely valuable find, even more so given the context, i.e. in association with an indentured labourer barrack.

Chickpea or Bengal Gram is one of the most important pulse crops in the world. It has a protein content of around 20 per cent and it constitutes an important meat substitute. Chickpeas are adapted to cool, dry climates and are mainly cultivated in the Mediterranean region, Ethiopia and India, this former country being the main producer of chickpeas worldwide. To date, our researchers have not found any reference to either its past or modern cultivation in Mauritius; therefore chickpeas must be considered an import.

Nowadays, chickpea is a ubiquitous component of Mauritian cuisine: it is soaked and cooked with spices and curry leaves to form *dholl*; when cooked, softened and ground, it is incorporated into a flour ball, rolled into thin discs, which are then cooked on a *tawa* to form the island’s famous *dholl puree*. When ground into flour, it is used as the base for coating aubergines and potatoes to form cakes and snacks. In order to produce this flour, the seeds are roasted and then milled. This processing causes some chickpeas to become carbonised during roasting. The appearance of charred chickpeas in the archaeological samples from Trianon suggests that this grain was used to produce flour. Far more important, given the diversity of its contemporary uses, and the fact that this is the quintessential ‘vegetarian’ product and a protein substitute for the poor, it is likely that chickpeas constituted an important and common food for the ancient inhabitants of this site.
ARCHAEOLOGICAL INTERPRETATIONS AND FUTURE WORK

The Trianon Barracks represent an exception in many ways. On a ‘national level’, the complex is unique and one of the very few well-preserved monuments of the Indentured experience. In the absence of similar buildings from other estates, there is no real point of comparison; also it is singular that these structures are not recorded in the rich written documentation that the island can claim.

Idiosyncrasies are also evident on a local scale. Fifteen families used the Barracks; by contrast, the whole estate retained some 1500 men, women and children living in the camps at the end of the 19th century. Similarities, at least in terms of building techniques, are noted for the ‘Warehouse Barracks’, also preserved in the Trianon area. These have an almost identical shape, roofing technique and spatial development. The only difference is that the storage barracks complex is not divided internally into different rooms. By contrast, the houses on the camps were completely different, constructed mainly of wood, mud and with grass roofs.

Thus, a number of elements suggest that the Barracks and the surrounding structures were built for a particular purpose, and given the dissimilarity with the normal housing used for sugar-estate workers, it would appear that they did not serve as a residence for general labourers. It is evident that the Barracks were assigned to those who had a specific role on the sugar estate. In order to gain a clearer understanding of who these individuals may have been, it is important to look at the sugar estate as a whole, contextualise the current standing and sub-surface archaeologies, and attempt an interpretation of their function.

While the Barracks themselves need careful appraisal, along with the finds, particularly those enigmatic indicators of cultural affiliation such as the chickpea, it is Structure A that we initially focus on. Given the fact that the building would have been substantial, but not constructed to the same degree of sophistication as the Barracks, we anticipate that we are dealing with a building that may have been used for storage, or indeed to house animals. Interestingly, The Report of the Royal Commission of 1875 states:

The first camp was on the other side of the river from the hospital and over 300 yards from the mill. It originally covered 27 acres and consisted of barracks. At one end of the camp was a ‘solidly-built Hindoo temple’. Between the barracks were vegetable gardens. No animals were permitted and the camp was very clean. Animals were kept in a separate shed 200 yards away. There were 14 cows, 1 calf, 38 goats, 250 pigs.

The proximity of the structure to the Barracks probably rules out that we have uncovered animal ‘sheds’. It appears to be too close, being only a few metres away, and

136
not 183 metres (200 yards) as recorded in the Royal Commission Report. As important, the sheer size and location of this structure relative to the Barracks, and Estate House, suggested that it was constructed to serve a more important function and one that was more intimately linked to the daily lives of the labourers.

The fact that there is a marked difference in the modes of construction between Structure A and the Barracks, at least for the foundations, is also informative. It emphasises even more strongly that the fabric and design of the Barracks were carefully planned and executed. These are important aspects in terms of informing us of the people who inhabited the Barracks.

The location of Structure A, in relation to the house, suggests that those who lived there had specific skills or associations with the Estate House; so they could have been a mixed collection of servants who needed to be close to the house itself, at all times. Additionally, the possibility that Structure A housed animals, but of non-food species with particular value, such as horses and bullocks, may indicate that the Barracks also served to house those individual, who dealt with the daily maintenance of the estate owners’ main mode of transport: the horse. This could help explain the intricate drainage features that mark the site, such as those noted in Trench 2.

Alternatively, the Barracks were lodgings for high-level ‘employees’, prime candidates perhaps being sirdars. This latter option is much harder to investigate archaeologically, and considering the points mentioned above, it is certainly plausible that these and other barrack complexes that are now lost, were retained for estate workers who were not employed for cutting sugarcane.

Monuments or material evidence may sometimes better represent the past, or the memory of the past, than history or historical documents. The Trianon Barracks symbolise the Indenture Experience in a vivid fashion. The fact that it is still possible to enter into the Barracks and to experience, phenomenologically, the material form of the workers’ houses, renders these buildings all the more significant. These Barracks have become a monument of the ordinary housing system for the indentured workers during the second half of the 19th century. This is despite the fact that history clearly evidences that the majority of those landing in Mauritius to work for the estate-owners lived in wooden huts in camps. The material structure of these huts was completely different from that of the Barracks. If the meaning of the monument is misunderstood, the monument itself cannot be accurately interpreted, or indeed visualised and conceived of, in a proper manner.

The first archaeological research at Trianon has demonstrated that the Barracks probably were the residences of a special group of indentured workers. The artefacts and the material culture uncovered, in association with these structures, have to be
connected to a social level that existed between the landowners and those workers who
toiled in the sugar-cane fields. The topographic approach has shown that, if we want to
study the material evidence of the working class, it is necessary to undertake research in
different regions and in novel ways, precisely in those areas previously occupied by the
camps. These Barracks, and associated structures, are not isolated monuments, but part
of a dynamic landscape that needs to be explored on a grander scale, using integrated
methodologies in order to properly understand the scale of the ‘settlement’ and its place
within the ‘sugar estate landscape’ (Fig. 12).

The key feature of this site is its ability to inform on the life-ways of indentured
workers apparently involved in a range of activities, not just cane-cutting. While we
now have a small insight into the possible nature and organisation of habitation and
daily life, in the absence of a clear material culture for the labourers, we lack indications
of identity. Considering that this group is unlikely to have much by way of material
goods, combined with the small, but important archaeological plant remains recovered
to date, this issue of identity must be investigated through food. Every ethnic group
has food rules and food taboos, and this makes food an important element in the study
of cultural identity and ethnicity. Combining this with appraisals of topographic,
landscape, subsoil and standing archaeologies is the only way in which we shall finally
gain an understanding of the ‘archaeology of indenture’.

ENDNOTES

1 Peerthum 2010.
2 Calaon 2011.
3 Zohary and Hopf 2000.